Домой Применение бетона Модуль поверхности бетонной конструкции

Модуль поверхности бетонной конструкции

Бетонные модули

4adf3ba93379149a6f61ffa672c96823.jpg

Модульные монолитные железобетонные блоки «Трансформер» производства компании «Мультиблок» позволяют в короткие сроки возводить строительные конструкции различного назначения. Представляют собой конструкцию, которая используется в качестве готовой строительной части для быстрого возведения объектов различного назначения.

Применение блоков «Трансформер»

Инженерные сооруженияТрансформаторные подстанцииРаспределительные подстанцииГазораспределительные пунктыПодстанции освещенияНасосные станцииПункты очистки водыБлоки с дизель-генераторными установкамиБлоки с биогазовыми установкамиКотельни Жилые здания Малоэтажные домаЦокольные этажиМини-отелиДачные строенияВременные постройки
Хозяйственные постройки МастерскиеМини-цехаЖивотноводческие помещенияСкладыМини-офисыДиспетчерские точкиПристройки различного назначения Торговые и сервисные пункты МагазиныКафеГаражиЗаправкиПункты ДПСПропускные/сторожевые будкиСервисные объекты

Основные характеристики бетонных модулей

Толщина стен 100 мм.
Длина конструкции от 3,2 до 7,5 м.18 ступеней с шагом 200 или 300 мм.
Ширина конструкции 2,3 — 2,5 — 3,0 м.
Высота внутри помещения от 2,48 до 2,9 м.
Высота подвала от 0,8 до 1,9 м.шаг 10 мм.
Высота крыши от 0,28 до 0,42 м.двускатная / односкатная
Срок службы 30 лет

Всего 64 типоразмера. Подробнее о габаритах и весе железобетонных блочных конструкций можно узнать в отделе продаж

Преимущества модулей «Трансформер»

Универсальность

Возможность создавать одно- или многоблочные сооружения, одно- или двухэтажные здания, помещения любой планировки и компоновки.

Удобство применения

100% заводская готовность, быстрый монтаж, возможность демонтажа и последующей сборки, полностью соответствуют действующим нормам и правилам, любые виды отделки.Производятся по технологии, позволяющей изготовить инженерный блок нужной конфигурации с требуемым расположением дверных и оконных проемов, технологических отверстий и т. д.

Модульность

Конструкции можно собирать и разбирать, а также комбинировать друг с другом, соединять последовательно или параллельно, создавать двухуровневые конструкции, расширять сооружение. Система стыковки унифицирована, пол не имеет перепадов по высоте.

Надежность

Долговечны, пожаробезопасны, сейсмостойки, экологичны. Толстые стены, двойное армирование и применение высококачественного бетона обеспечивают прочность конструкции. Кабины устойчивы к землетрясениям до 9 баллов по шкале MSK-64, способны локализовать внутренний взрыв и действие дуги КЗ. Отсутствие швов в монолитной конструкции защищает помещение от проникновения влаги, пыли, насекомых.

Комплектность

Конструкции под ключ, возможна поставка металлоизделий (ворота, двери, жалюзийные решетки, козырьки, нащельники и др.).

Простота и удобство

Размеры бетонных конструкций позволяют перевозить их как автомобильным транспортом с низкой платформой, так и по железной дороге. Для подъема конструкций предусмотрены закладные детали. Используется замковая система соединений, не требующая дополнительных сварочных и отделочных работ. Крупное оборудование устанавливается и меняется через съемную крышу. Минимальный объем строительных и монтажных работ.

trf-ural.ru

Смежное понятие

Несложная ассоциативная цепочка заставит нас затронуть еще одно понятие, относящееся к бетонным конструкциям. Это так называемый модуль Юнга для бетона (он же — модуль упругости или модуль деформации).

3531051dd2b17f72cff7b6d7febf0e9b.gif

Наглядное представление смысла термина.

Значение модуля определяется экспериментально, по результатам испытания образца, измеряется в паскалях (чаще, с учетом высоких значений, в мегапаскалях) и обозначается символом Е. Честно говоря, этот параметр интересен лишь специалистам и при малоэтажном строительстве не учитывается.

Упрощенно говоря, этот параметр описывает способность материала кратковременно деформироваться при значительных нагрузках без необратимых нарушений внутренней структуры. Еще проще? Пожалуйста: чем выше модуль упругости, тем меньше вероятность, что при ударе кувалдой от фундамента отколется кусок бетона.

После такого определения логично предположить, что модуль упругости (или деформации) связан с прочностью на сжатие и, соответственно, маркой (классом) материала.

Действительно, зависимости практически линейная.

  • Для тяжелого бетона естественного твердения класса В10 модуль деформации равен 18 МПа.
  • Классу В15 соответствует значение в 23 МПа.
  • В20 — 27 МПа.
  • Модуль деформации бетона В25 равен 30 МПа.
  • Класс В40 — 36 МПа.

Полная таблица значений для разных видов бетона.

Реклама

Модуль — поверхность — Большая Энциклопедия Нефти и Газа, статья, страница 1

Модуль — поверхность

Cтраница 1

Модули поверхностей одного наименования могут различаться по размерам поверхностей, расположением на детали, требованиями к точности обработки, качеством поверхностного слоя. Это разнообразие приводит к тому, что для изготовления МП одного наименования может быть несколько технологических процессов.  [1]

Модуль поверхности М — отношение площади поверхности конструкции к ее объему.  [3]

Модулем поверхности называется отношение охлаждаемой поверхности конструкции к объему конструкции.  [5]

Модулем поверхности называется отношение охлаждаемой поверхности к объему бетона.  [6]

Увеличение модуля поверхности ( отношение поверхности образца к его объему) и соответствующее увеличение поверхности соприкосновения с агрессивной средой влечет за собой более быстрое изменение состава агрессивной среды и более быстрое разрушение образцов, что и является основой ускоренного метода исследования. Скорость процесса коррозии определяют после известного срока обработки порошка преимущественно на основании: 1) изменения веса, 2) химического анализа количества перешедших в раствор компонентов, 3) определения веса сухого остатка вытяжки, 4) измерения электропроводности полученного раствора. Таким образом, этот метод учитывает только химическую сторону воздействия среды, в то время как оно является следствием совокупности химических, физико-химических и чисто физических ( механических) явлений. Трудно ожидать, чтобы физико-химические явления при испытаниях порошка в достаточной мере соответствовали явлениям, происходящим в монолитных керамических образцах.  [7]

Модуль поверхности Мп железобетонной или бетонной конструкции

Модуль поверхности (Мп) железобетонной или бетонной конструкции — характеризует площадь ее поверхности (м2), приходящейся на единицу ее объема (м3), выражается в условных единицах (м1).

[Ушеров-Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы.- 2009. – 112 с.]

Рубрика термина: Общие термины, бетон

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. — Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

Обработка зимнего бетона

Если после набора полной прочности зимний бетон и монолиты из неподготовленного бетона нормальной влажности обрабатываются вполне традиционно, то перфорация и устройство проемов в монолите до набора им прочности имеет свою специфику.

Проще говоря, не набравший марочную прочность и замерзший бетон не стоит дробить отбойным молотком и перфоратором. В этом случае возможно появление трещин.

c2d4fb7976e6ef05b63442ff504b9fac.jpg

До набора полной прочности бетон легко трескается.

Оптимальный способ устройства проемов — формирование опалубки для них еще на стадии заливки монолита. Среди прочего, в этом случае возможна полноценная анкеровка краев арматуры по краям проема. Там, где это невозможно и проем придется вырезать по месту, применяется рифленая арматура: рифление на ее поверхности само по себе служит анкером для прутка.

Полезно: для устройства отверстия (например, продуха или ввода коммуникаций в ленточном фундаменте) при его заливке своими руками достаточно заложить в опалубку асбестоцементную или пластиковую трубу соответствующего диаметра.

На фото — простейший способ устройства продухов.

Для собственно обработки там, где без нее не обойтись, предпочтителен алмазный инструмент. Алмазное бурение отверстий в бетоне не требует использования ударного режима; как следствие — меньше вероятность трещин и сколов. Резка железобетона алмазными кругами оставляет края реза идеально ровными и, что очень удобно, не требует смены режущего круга при резке армирования.

Выдерживание бетона методом термоса

Способ термоса применяют в основном при бетонировании массивных конструкций. Для легких каркасных конструкций этот способ не применяют, так как утеплять их трудно и неэкономично.

Массивность конструкции характеризуется отношением суммы охлаждаемых (наружных) поверхностей к ее объему. Это отношение называется модулем поверхности Мп. который определяют по формуле

Мп = F/V

где F — поверхность, м 2 V — объем, м 3 .

При определении модуля поверхности не учитывают поверхности конструкций, соприкасающиеся с немерзлым грунтом или хорошо прогретой бетонной или каменной кладкой. Чем меньше Мп. тем конструкция массивнее.

Для колонн и балок модуль поверхности определяют как отношение периметра элемента к площади его поперечного сечения. Способом термоса обычно пользуются при выдерживании конструкций с модулем поверхности до 6. Часто способ термоса для таких конструкций сочетают с периферийным электропрогревом конструкций. Но, как указывалось выше, для расширения области применения способа применяют предварительный электроразогрев бетонной смеси или приготовляют бетонную смесь с добавками-ускорителями, ускоряющими твердение бетона и снижающими температуру замерзания бетонной смеси. В этих случаях возможно применять способ термоса в конструкциях с Мп = 8—10.

При выдерживании конструкций с Мп до 20 способом термоса необходимо применять быстротвердеющие цементы высоких марок (не ниже 500) и глиноземистые цементы, которые не только быстро набирают прочность, но и выделяют при твердении большое количество тепла. В результате сокращается время, в течение которого бетон должен быть предохранен от замерзания, а также повышается запас тепла в нем, т. е. облегчаются условия термосного выдерживания бетона.

Для сокращения срока получения бетоном критической прочности бетонную смесь укладывают с максимально допустимой температурой, опалубку утепляют, а уложенный в конструкцию бетон укрывают.

Утепление опалубки назначается по расчету и должно быть выполнено без зазоров и щелей, особенно в углах и местах стыкования теплоизоляции. Для уменьшения продуваемости опалубки и предохранения теплоизоляционных материалов (например, войлока, опилок) от увлажнения по обшивке и опалубке прокладывают слой толя или пергамина.

Если опалубка состоит из железобетонных плит-оболочек, утепление к ним прикрепляют с наружной стороны, а с внутренней стороны, соприкасающейся с бетонной смесью, их предварительно отогревают. Выступающие углы, тонкие элементы и другие части, остывающие быстрее основной конструкции, дополнительно утепляют на длине участка, назначаемого проектом производства работ.

Поверхности ранее забетонированных блоков и основания, подверженные воздействию наружного воздуха в местах примыкания к свежеуложенному бетону, утепляют на полосе шириной 1-1,5 м. Все работы по утеплению опалубки должны быть обязательно закончены до начала бетонирования.

Схема утепления блока

Модуль — поверхность — Большая Энциклопедия Нефти и Газа, статья, страница 3

Модуль — поверхность

Cтраница 3

Дальнейшую классификацию осуществляют по конструктивным и геометрическим признакам, когда множество каждого класса модулей поверхностей делится на подклассы модулей по однотипности сочетающихся поверхностей и далее на группы и подгруппы.  [31]

При проектировании модульного технологического процесса предполагается, что уже имеется разработанная технология изготовления модуля поверхностей каждого наименования ( назовем ее технологическим блоком), которая хранится в картотеке или памяти ЭВМ. Рассмотрим каждый из перечисленных этапов.  [33]

Режим электропрогрева назначается в зависимости от заданного процента прочности бетона, характера ( модуля поверхности) конструкции, вида опалубки ( толщина, утеплитель), возможности учета увеличения прочности бетона за время его остывания, а также от вида, активности и содержания цемента в бетоне.  [34]

В результате проектирования операции должна быть выбрана схема базирования заготовки, определена последовательность обработки модулей поверхностей, рассчитаны затраты штучно-калькуляционного времени и составлена технологическая карта. Проектирование операции предполагает, что известны МП, которые необходимо обрабатывать, и имеется технология изготовления каждого модуля поверхностей.  [35]

При выдерживании бетона по способу термоса ориентировочные сроки охлаждения бетона до 0 в конструкциях с модулем поверхности ( отношение поверхности охлаждения в квадратных метрах к объему в кубических метрах) более 2 — 3 определяются по формуле проф.  [36]

Так, из плоских поверхностей и поверхностей вращения, рабочих и связующих поверхностей следует стремиться сформировать модули поверхностей таким образом, чтобы их можно было отнести к какой-либо подгруппе класса МПБ.  [37]

Так продолжается до тех пор, пока не будут определены все МТБ, обеспечивающие изготовление всех модулей поверхностей.  [38]

Основным принципом построения маршрута модульного технологического процесса является формирование операций по обработке не отдельных поверхностей, а модулей поверхностей.  [39]

Режим электропрогрева при электродном способе назначается в зависимости от требуемой прочности бетона к моменту окончания прогрева, от модуля поверхности конструкции, вида и активности цемента, а также величины дополнительной прочности, накапливаемой во время остывания прогретой конструкции.  [40]

Принимая во внимание все МТБ, их очередность, МП и МПИ, изготовляемые от каждого МТБ и уровень качества модулей поверхностей, устанавливается ориентировочная последовательность изготовления последних.  [41] . Скорость подъема температуры в бетонных конструкциях с модулем поверхности менее 6 и три большой их протяженности не должна превышать 5 в 1 час, а в железобетонных конструкциях с модулем поверхности более 6 — 8 в 1 час

Для тонких конструкций, сильно армированных, небольшой протяженности ( 6 — 8 м) допускается увеличение скорости повышения температуры до 15 в 1 час. Скорость остывания бетона по окончании прогрева не должна превышать 8 в 1 час.  [42]

Скорость подъема температуры в бетонных конструкциях с модулем поверхности менее 6 и три большой их протяженности не должна превышать 5 в 1 час, а в железобетонных конструкциях с модулем поверхности более 6 — 8 в 1 час. Для тонких конструкций, сильно армированных, небольшой протяженности ( 6 — 8 м) допускается увеличение скорости повышения температуры до 15 в 1 час. Скорость остывания бетона по окончании прогрева не должна превышать 8 в 1 час.  [42]

К таким в первую очередь относятся детали, выполняющие роль кинематических звеньев ( зубчатые колеса, червяки, рейки, винты, рычаги и т.п.), различного рода инструмент ( режущий мерительный слесарный), копиры, шаблоны и др. Представляет большой научный и практический интерес статистическое исследование модулей поверхностей. Принадлежность модуля поверхностей к тому или иному классу тем самым в значительной степени предопределяет уровень требований к качеству и технологии изготовления.  [44]

К таким в первую очередь относятся детали, выполняющие роль кинематических звеньев ( зубчатые колеса, червяки, рейки, винты, рычаги и т.п.), различного рода инструмент ( режущий мерительный слесарный), копиры, шаблоны и др. Представляет большой научный и практический интерес статистическое исследование модулей поверхностей. Принадлежность модуля поверхностей к тому или иному классу тем самым в значительной степени предопределяет уровень требований к качеству и технологии изготовления.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

Выдерживание бетона способом термоса

Строительные машины и оборудование, справочник

Категория:

Бетонные работы в зимних условиях

Способ термоса применяют в основном при бетонировании массивных конструкций. Для легких каркасных конструкций этот способ не применяют, так как утеплять их трудно и неэкономично.

При определении модуля поверхности не учитывают поверхности конструкций, соприкасающиеся с немерзлым грунтом или хорошо прогретой бетонной или каменной кладкой. Чем меньше Мп, тем конструкция массивнее.

Для колонн и балок модуль поверхности определяют как отношение периметра элемента (в плоскости поперечного сечения) к площади поперечного сечения.

Способом термоса обычно пользуются при выдерживании конструкций с модулем поверхности до 6. Часто способ термоса для таких конструкций сочетают с периферийным электропрогревом.

Для использования способа термоса в конструкциях с более высокими значениями модуля поверхности применяют предварительный электроразогрев бетонной смеси или в бетонную смесь при приготовлении вводят добавки—ускорители твердения бетона, которые одновременно снижают температуру замерзания бетона. В этих случаях можно применять способ термоса в конструкциях с модулем поверхности, равным 8—10.

При выдерживании способом термоса конструкций с модулем поверхности более 3 применяют быстротвердеющие портландце-менты и портландцементы высоких марок (не ниже 400), которые не только быстро набирают прочность, но и выделяют при твердении повышенное количество тепла. В результате сокращается время, в течение которого бетон должен быть предохранен от замерзания, а также повышается запас тепла в нем, т. е. облегчаются условия термосного выдерживания бетона.

aeea666e8ad0a1987db1d5d6d16e2946.gif

Рис. 71. Схема утепления блока:1 — блок, подготовленный к бетонированию, 2 — утепленная опалубка, 3 — ранее уложенный бетон

Для сокращения срока получения бетоном критической прочности бетонную смесь укладывают с максимально допускаемой температурой, опалубку утепляют, а уложенный в конструкцию бетон укрывают.

Утепление опалубки должно быть выполнено без зазоров и щелей, особенно в углах и местах стыкования теплоизоляции. Для уменьшения продуваемости опалубки и предохранения теплоизоляционных материалов от увлажнения по обшивке опалубки прокладывают слой толя.

Если опалубка состоит из железобетонных плит-оболочек, утепление к ним прикрепляют с наружной стороны, а с внутренней стороны, соприкасающейся с бетонной смесью, их предварительно отогревают. Выступающие углы, тонкие элементы и другие части, остывающие быстрее основной конструкции, дополнительно утепляют на длине участка, назначаемого проектом производства работ.

Поверхности ранее забетонированных блоков и оснований, подверженных воздействию наружного воздуха в местах примыкания к свежеуложенному бетону, утепляют на полосе шириной 1 —1,5 м (рис.71).

После окончания бетонирования немедленно утепляют верхнюю грань блока теплоизоляцией, которая по своим качествам не уступает утепленной опалубке. Опалубку и утепление снимают с разрешения технического персонала после достижения бетоном необходимой критической прочности при остывании бетона в наружных слоях до 0°С. Опалубку следует снимать до примерзания ее к бетону.

После распалубливания бетон следует временно укрывать теплоизоляционным материалом во избежание его растрескивания, если разность температур поверхностного слоя бетона и наружного воздуха превышает 20 °С для конструкций с модулем поверхности от 2 до 5 и 30 °С — для конструкций с модулем поверхности 5 и выше.

Массивные блоки с модулем поверхности менее 2 и блоки гидротехнических сооружений распалубливают, учитывая заданные проектом наибольшие допускаемые температурные перепады между ядром блока и его поверхностью и между поверхностью блока и наружным воздухом.

Читать далее: Применение бетонов с противоморозными добавками

Категория: —
Бетонные работы в зимних условиях

Главная → Справочник → Статьи → Форум

stroy-technics.ru

  • Земляное полотно это
  • Грузовая платформа
  • Конвейер ленточный чертеж
  • Иэ 5708an
  • Типы мостов
  • Используется для переработки в сталь
  • Гидравлический мотор
  • Фреоновые холодильные установки
  • Тягач маз фото
  • Установка топливного насоса

Бетон и зима Суровые будни начальника лаборатории

. контакты 8 929 943 69 68 http://vk.com/club23595476 .

  • Мы в большинстве своем научились,славно тепляки для бетона зимой  строить,это уровень 1956,года.только прежде зимой для бетона  на севере мы еще печки строили, и воду ставили для увлажнения воздуха в тепляке  ,и теплотехнический  расчет для зимнего бетонирования делали и бетонные образцы знали куда ставить по уму при бетонировании зимой ,а не для показателей прочности бетона  и распалубку производили по температуре твердения бетона при зимнем бетонировании  и где контрольные точки размещать при зимнем бетонировании
  • .Правила размещения контрольных точек измерения температуры в монолитных конструкциях при зимнем  бетонировании
  • Руководство по зимнему бетонированию НИИЖБ
  • Поверхность бетона определяется модулем поверхности конструкции .Для расчета модуля поверхности геометрически сложных конструкций необходимо произвести разбивку сложного тела на простейшие (куб,параллелипипед, цилиндр ,пластина и определить отдельно модуль поверхности куба ,модуль поверхности цилиндра ,модуль поверхности пластины ,
  • Формула для определения модуля поверхности имеет следующий вид Мп=F/V
  • Для колонн и балок прямоугольного сечения со сторонами а,b,м    Модуль поверхности равен 2/а+2/b
  • Для колонн и балок квадратного сечения со стороной а , модуль поверхности Мп =4/аДля куба со стороной а ,м модуль поверхности Мп=6/а
  • А) Отдельно стоящего модуль поверхности 2/а+2/b+2/c
  • b)прилегающего к массиву модуль поверхности МП=2/а+2/b+1/c
  • для плит и стен толщиной а,м  модуль поверхности Мп=2/а
  • Для цилиндра с радиусом R и высотой с ,м модуль поверхности Мп=2/R+2/c
  • Все о зимнем бетонировании
  • Как найти модуль поверхности бетона  Зимнее бетонирование  тсн 12-336-2007
  • Этот документ дает четкое и ясное понимание,что есть зимнее бетонирование, что есть модуль поверхности конструкции ,модуль поверхности бетона подсчет модуля поверхности,формулы для определения модуля поверхности должен знать каждый строитель участвующий при производстве бетонных работ < ,фактический режим твердения бетона представлен в рекомендациях .ТСН регламентирует требования к процессу бетонирования при производстве бетонных работ зимой .Позволяет определиться с выбором наиболее эффективного способа обогрева и приготовления бетона в зависимости от способа приготовления бетонной смеси ,транспортирования и укладки бетона.Способы зимнего бетонирования  необходимы для получения прочности,выдерживание бетона в конструкциях,особенности выдерживания бетона,метод термоса, обеспечение твердения бетона с противоморозными добавками,метод электропрогрева,предварительный разогрев бетона,обгрев бетона в греющей опалубке,воздушный обогрев бетона,контроль за производством работ, пример технического задание на проектирование состава бетона,Модуль поверхности и формулы для определения модуля поверхности,методика определения электрического сопротивления бетона,мощность греющего провода пнсв,Пример для определения прочности бетона с использованием графика нарастания прочности и фактического температурного режима,форма температурного листа,форма журнала бетонных работ Модуль поверхности равен отношению суммы охлаждаемых площадей поверхности конструкции  к ее объему ,при уладке бетонной смеси на талое основание поверхность конструкции,соприкасающаяся с ним в ?F в расчете модуля поверхности конструкции не учитываютДля параллелепипеда со сторонами а,b b c в м

Модульные бетонные

Модульный бетонный завод, HZS180

Модульный бетонный завод HZS180 станет отличным решением для крупных проектов строительства, для которых требуется большое количество готовой бетонной смеси. При их разработке и производстве были применены как передовые технологии, так и накопленные за годы работы методики, что обеспечило высокую производительность и высокие эксплуатационные показатели. Со скоростью производства 180 м3/ч наши заводы по производству бетона нашли широкое применение при строительстве дорог, мостов, дамб, аэропортов, пристаней и других сооружений.

  • HZS180-1
  • HZS180-2

Запрос от

Основные особенности модульных бетонных заводов
Простота установки и транспортировки
Благодаря модульному исполнению бетонного завода дозатор, ленточный конвейер, смеситель, винтовой конвейер и силос для хранения цемента представляют собой независимые модулями. При необходимости это позволяет установить или разобрать завод в кратчайшие сроки, а также значительно упрощает процесс транспортировки между стройплощадками. Кроме того, в зависимости от типа и размера объекта допускаются различные схемы размещения.

Отличные экологические показатели
Подача, взвешивание, перемешивание и выгрузка всех порошкообразных материалов осуществляется в закрытой среде, что в значительной степени сокращает количество пыли и снижает уровень шума.

Модель HZS180
Смеситель Производительность (м³/ч) 180
Модель JS3000
Мощность (кВт) 2×55
Объем готового замеса (м³) 3
Размеры заполнителей (мм) ≤150
Дозаторы инертных заполнителей Объем (м³) 4×20
Количество бункеров 4
Пропускная способность ленточного конвейера (т/ч) 400
Диапазон и точность взвешивания Заполнители (кг) 4×3600±2%
Цемент (кг) 1800±1%
Угольная пыль (кг) 600±1%
Вода (кг) 800±1%
Добавки (кг) 50±1%
Общая мощность (кВт) 178
Высота разгрузки (м) ≥4

www.etwinternational.ru

Оставьте ответ

Введите свой комментарий
Введите имя